Running data through a network
Function Signature
def run(
self,
inputs: np.ndarray
) -> np.ndarray:
Parameters
inputs
(np.ndarray): The input data to run through the network. This should be a numpy array of shape(input_shape,)
.
Return Value
output
(np.ndarray): The output of the network after running the given input through it. This should be a numpy array of shape(output_shape,)
.
Description
The run
function takes a single input and runs it through the network, returning the output of the network.
The inputs
parameter should be a numpy array of shape (input_shape,)
, where input_shape
is the shape of the input to the network.
The output
parameter is a numpy array of shape (output_shape,)
, where output_shape
is the shape of the output of the network.
Examples
Here's an example of how to use the run
function:
from deeprai.models import FeedForward
model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(loss='categorical cross entropy')
input_data = np.random.rand(784)
output_data = model.run(input_data)
This code creates a FeedForward
model with a single dense layer of size 784
, followed by two additional dense layers with ReLU activation functions, and a final dense layer with a softmax activation function. The config
function sets the optimizer to gradient descent
and the loss function to categorical cross entropy
.
The run
function takes a single input data of shape (784,)
and returns the output of the network as a numpy array of shape (10,)
.
No Comments