Advanced Search
Search Results
99 total results found
Noise
Module: deeprai.tools.noise This module provides a set of classes for introducing different types of noise into numpy arrays, typically used for image data augmentation or robustness testing. 1. GaussianNoise Class Description: The GaussianNoise class ap...
Toolkit
Module: deeprai.tools.toolkit This module provides a collection of utility functions designed for numpy arrays. These functions offer various operations like verification, rounding, normalization, reshaping, and others, enhancing usability and information ret...
Linear Regression
Module: deeprai.models.regression.linear_regression This module introduces a simple Linear Regression model. Linear Regression is a statistical technique commonly used for modeling and analyzing relationships between two variables. Class: LinearRegression ...
Poly Regression
Module: deeprai.models.regression.poly_regression Class: PolyRegression A class representation of the polynomial regression model. 1. Initializer: __init__(self) Description: Initializes the PolyRegression class. Attributes: fitted_vals (list): A ...
Sine Regression
Module: deeprai.models.regression.sine_regression Class: SineRegression A class representation of the sine regression model. 1. Initializer: __init__(self) Description: Initializes the SineRegression class. Attributes: fitted_vals (list): A list t...
Saving a Model
Function Signature def save(self, file_location: str) -> None: Parameters file_location (str): The location/path where the model's state will be saved. Return Value This function does not return anything. It saves the model's state to the specif...
Loading a Model
Function Signature def load(self, file_location: str) -> None: Parameters file_location (str): The location/path from which the model's state will be loaded. Return Value This function does not return anything. It loads the model's state from th...
Instant classifier
Instant Classifier Function Function Signature def instant_classifier(self, x_vals, y_vals, query_point, p=3, k=2): Parameters x_vals: The input data points. y_vals (must be converted to int32): The labels corresponding to the input data poi...
Store Data in KNN
Storing Values in KNN Classifier Function Signature def store_vals(self, x_values, y_values, p=3, k=2): Parameters x_values: The input data points to be stored in the classifier. y_values (must be converted to int32): The labels corresponding ...
Classifying a Query Point
Classifying a Query Point with KNN Function Signature def classify(self, query_point): Parameters query_point: The point for which classification is to be determined. Return Value Returns the classification result for the query_point based on the...
Calculating Classification Probability
Calculating Classification Probability with KNN Function Signature def classify_probability(self, query_point, expected_val): Parameters query_point: The point for which classification probability is to be determined. expected_val: The label v...
Retrieving Nearest Neighbors
Retrieving Nearest Neighbors with KNN Function Signature def classify_neighbors(self, query_point): Parameters query_point: The point for which the nearest neighbors are to be determined. Return Value Returns the indices of the k nearest neighbor...
Configuring Distance Metric
Configuring Distance Metric for KNN Function Signature def config_distance(self, distance): Parameters distance: The name of the distance metric to be configured for the KNN instance. Return Value This function does not return anything. It modifi...