
Basic Usage
Loading files/dictionaries
Getting nodes
Getting a value
Setting values
Saving
Getting the names of the children
Checking for a value
Deleting a Node
Getting the name of a Node
Math and object manipulation
Getting the children

Loading files/dictionaries
Syntax:

To load a file/dictionary, simply create a new Node object with the filename or dictionary as first
argument, along with any optional file arguments you want to pass (See The File object). For
default filetype mappings, see File types.

Node(file_or_dictionary, **file_parameters)

db = Node('file.pyn')

db = Node('file.abc', filetype='txt', autsave=True)

https://pen.jvadair.com/books/pyntree/page/the-file-object
https://pen.jvadair.com/books/pyntree/page/file-types

Getting nodes
Syntax:

There are two ways to retrieve a child Node:

You can also retrieve deeper nodes like so:

Notice that it doesn't particularly matter whether you use the .get() method or simply access the
Node as an attribute.

Node.get(*children)

root_node.get('child')
root_node.child

root_node.a.b.c
root_node.get('a').b.get('c')

Remember, getting a node means accessing the child node object - to get the value, see
Getting values.

https://pen.jvadair.com/books/pyntree/page/getting-values

Getting a value
Syntax:

pyntree takes a somewhat unique yet simple approach to getting the values stored in nodes thanks
to python limitations. To get a node's value, simply call it:

The same applies to child nodes.

To get the names of all the child nodes, see Getting a list of all children.

Node()

root_node()

https://pen.jvadair.com/books/pyntree/page/getting-a-list-of-all-children

Setting values
Syntax:

To change a value or create a new node, you can use one of two general methods:

The set() method:

Or by directly setting the attribute:

Node.set(*children, value)

your_node.set('name', 'Jimmy')

your_node.name = 'Jimmy'

Remember, if a node doesn't exist to begin with, you can't create children of it!
The below code will NOT WORK:

your_node.doesnt_exist.value = 3

Saving
Syntax:

Simply call the save method to save your data:

You can also specify a different filename to (temporarily) save to:

For changing the file to be saved to (in a more permanent sense), see [replaceme]

Node.save(filename=None)

root_node.save()

You can also call the save method on child nodes, but it will save the data in the root node to
the proper file.

root_node.save(filename="temp.file")

Getting the names of the
children
Syntax:

To get a list of all of a Node's children, simply use the values property:

Node._values

Node._values

This will return a list of strings, not Nodes.

If you have a child Node named "_values", you will need to use the get function to retrieve
it. See here for more details.

.values -> ._values as of 1.0.0

https://pen.jvadair.com/link/109#bkmrk-attempting-to-retrie-0

Checking for a value
Syntax:

To see if a Node has a child with a given name, use the has method:

Node.has(*names)

Node.has(name)

Deleting a Node
Syntax:

The delete function can take either 0 or 1+ parameters:

In the first example, the node on which the function is called will be deleted. In the latter, the child
with the specified name will be deleted.

Node.delete(*children)

Node.delete()

Node.delete(name)

When we speak of "deleting nodes" here, we are referring to deleting the data which those
Nodes represent.

Getting the name of a Node
Syntax:

Let's say you have a miscellaneous Node that got passed to a function somehow. What is its
purpose? The name of the Node may shed some light on this:

A root node without a filename (pure dictionary) will return the string 'None' (not the object, for
compatibility reasons).

Node._name

from pyntree import Node
x = Node('test.pyn')
x._name # 'test.pyn'
x.a = 1
x.a._name # 'a'

If you have a child Node named "_name", you will need to use the get function to retrieve it.
See here for more details.

.name -> ._name as of 1.0.0

https://pen.jvadair.com/link/109#bkmrk-attempting-to-retrie-0

Math and object
manipulation
Syntax:

Math operations
If you used pyndb, you probably had to do something like this:

Let's be real here, this SUCKS. pyntree does it better:

Wow, that's infinitely simpler and less painful, right?!

Object operations
You can interact with a Node's data directly once you retrieve it:

Node += val

x = PYNDatabase({})
x.set("a", 1)
x.set("a", x.a.val + 1)

x = Node()
x.a = 1
x.a += 1

x = Node()
x.a = [1,2,3,4]
x.a().append(5)
print(x.a()) # -> [1,2,3,4,5]

Getting the children
Syntax:

The ._children property returns a list of Node objects (the children of the parent Node)

Node._children

