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Getting Started

Set up your first Network
With Deepr it is quite easy to start making your own neural network model. This chapter will show
you how to make your first neural network using Deepr. The goal of this project will be to sum two
floating point numbers, lets get started!

First we have to install DeeprAI, navigate to a comand line and enter as follows:

pip install deeprai

Now that we have downloaded the package, we will be able to start making our neural network. For
the next step make a new python file and write the following:

from deeprai import models

network = models.FeedForward()

This imports the models folder from Deepr, which is the standard practice for making a model.
Then we create the network object which is initializing our FeedForward class. Our next step is to
set up our network's dense layers. Because our goal is to sum two floating point numbers, we will
have the layer structure of 2,5,1 neurons (1 inputs layer with 2 neurons, 1 hidden layer with 5
neurons , and 1 output layer with 1 neuron). Lets make it!

network.add_dense(2)

network.add_dense(5, activation='linear')

network.add_dense(1, activation='linear')

Great! we set the activation function to a linear function. The activation function on default will be
sigmoid if nothing is specified. If you don't know what that is, don't worry about it. If you  do know,
there are more advanced options. Before we can train our neural network we need to set up
training data it can learn from. Navigate to the top of you file and add these to the import list:

# ...
import numpy as np
import random

We are importing numpy for its array data-type, and we are importing random to generate random
training data. Lets generate some training data. We need two arrays, one to be a 2D list of two
floating point numbers, the second will have the summed values. For example Array 1:[[0.2,



0.6],[0.1, 0.3]], Array 2: [[.8], [.4]]. Now that we have that inplace lets build it!, Enter this below the
import statements.

inputs = np.array([[random.random()/2 for _ in range(2)] for _ in range(5000)])
expected = np.array([[i[0] + i[1]] for i in inputs])

Now we have all the data, we have all the things we need to train the network. Lets train it.
Navigate back down to the bottom of the file and add this line:

network.train_model(train_inputs=inputs,train_targets=expected,test_inputs=inputs,test_targets=expected,
epochs=20)

Awsome! We set up connected our inputs and expected values into the neural network, we also set
the epochs to 20 (how many times the neural network will run through the training data). One last
thing, if we want to test out our network we can ask it a question based on its training data. Lets
quiz our network with a simple addition problem and output the results:

output = network.run(np.array([.3,.1]))
print(output)

Now we can click run and see what happens!  

(Note: In PyCharm, in run config check "Emulate terminal in output console" if you want the correct
loading animations. )

Here is the full code up to this point:

import numpy as np
import random
import deeprai.models as model

inputs = np.array([[random.random()/2 for _ in range(2)] for _ in range(3000)])
expected = np.array([[i[0] + i[1]] for i in inputs])

network = model.FeedForward()

network.add_dense(2)

network.add_dense(5, activation='linear')

network.add_dense(1, activation='linear')

network.train_model(train_inputs=inputs,train_targets=expected,test_inputs=inputs,test_targets=expected,epo



This was pretty easy, in the next tutorial we will do something a bit more difficult. We will train on
the mnist dataset!

chs=20)

output = network.run(np.array([.3,.1]))
print(output)
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Feed Forward Model

Creating a layer
Function Signature

Parameters
neurons  (int): The number of neurons in the dense layer. Required parameter.
activation  (str, default='sigmoid'): The activation function to use in the dense layer. Valid
options are 'sigmoid', 'relu', 'leaky relu' 'tanh', 'softmax', and 'linear'
dropout  (float, default=0.): The dropout rate to use in the dense layer. This parameter
should be a float between 0 and 1, where 0 means no dropout and 1 means all neurons
are dropped.
l1_penalty  (float, default=0.): The L1 regularization penalty to use in the dense layer. This
parameter should be a float greater than or equal to 0.

l2_penalty  (float, default=0.): The L2 regularization penalty to use in the dense layer. This
parameter should be a float greater than or equal to 0.

Return Value
This function does not return anything. It modifies the deeprai.models.FeedForward  instance by adding
a dense layer with the specified parameters.

def add_dense(
    neurons: int,
    activation: str = 'sigmoid',
    dropout: float = 0.,
    l1_penalty: float = 0.,
    l2_penalty: float = 0.
) -> None:



Description
The add_dense  function adds a dense layer to the deeprai.models.FeedForward  instance. A dense layer
is a layer of fully connected neurons where each neuron is connected to every neuron in the
previous layer.

If this is the first layer added to the model, then add_dense  will automatically treat it as an input
layer and ignore any arguments other than neurons . This is because an input layer does not have
an activation function, dropout, or regularization penalties.

If this is not the first layer added to the model, then add_dense  will add a dense layer with the
specified parameters to the model.

Examples
Here is an example of how to use the add_dense  function:

This code creates a FeedForward  model with an input with 784 neurons, adds a dense layer with
128 neurons, a ReLU activation function, and a 20% dropout rate, and then adds another dense
layer with 64 neurons, a sigmoid activation function, and an L2 regularization penalty of 0.001.

 

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu', dropout=0.2)
model.add_dense(64, activation='sigmoid', l2_penalty=0.001)



Feed Forward Model

Configuring Loss/Optimizers
Function Signature

Parameters
optimizer  (str, default='gradient descent'): The optimizer to use during training. Currently,
deeprai  is in beta, so the only valid option for optimizer is 'gradient descent'.
loss  (str, default='mean square error'): The loss function to use during training. Valid
options are 'mean square error', 'categorical cross entropy', and 'mean absolute error'.

Return Value
This function does not return anything. It modifies the deeprai.models.FeedForward  instance by setting
the optimizer and loss function.

Description
The config  function sets the optimizer and loss function for the deeprai.models.FeedForward
instance. While it is not necessary to call this function, if called, it will use the default values of
'gradient descent' for optimizer and 'mean square error' for loss function.

Currently, deeprai is in beta, so the only valid option for optimizer is 'gradient descent'. The loss
parameter sets the loss function to use during training. Valid options are 'mean square error',
'categorical cross entropy', and 'mean absolute error'.

def config(
    optimizer: str = 'gradient descent',
    loss: str = 'mean square error'
) -> None:



Examples
Here's an example of how to use the config  function:

This code creates a FeedForward  model with an input shape of (784,) , adds three dense layers with
ReLU and softmax activation functions, and sets the optimizer to 'gradient descent' and the loss
function to 'categorical cross entropy'.

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='categorical cross entropy')



Feed Forward Model

Training a network
Function Signature

Parameters
train_inputs  (np.ndarray): The input data to use for training. This should be a numpy array
of shape (num_samples, input_shape) .
train_targets  (np.ndarray): The target data to use for training. This should be a numpy
array of shape (num_samples, output_shape) .
test_inputs  (np.ndarray): The input data to use for testing. This should be a numpy array of
shape (num_samples, input_shape) .
test_targets  (np.ndarray): The target data to use for testing. This should be a numpy array
of shape (num_samples, output_shape) .
batch_size  (int, default=36): The batch size to use during training.
epochs  (int, default=500): The number of epochs to train the model for.
learning_rate  (float, default=0.1): The learning rate to use during training.
momentum  (float, default=0.6): The momentum to use during training.
early_stop  (bool, default=False): Whether to use early stopping during training. If True, the
training will stop when the validation loss stops improving.
verbose  (bool, default=True): Whether to print training progress during training.

def train_model(
    train_inputs: np.ndarray,
    train_targets: np.ndarray,
    test_inputs: np.ndarray,
    test_targets: np.ndarray,
    batch_size: int = 36,
    epochs: int = 500,
    learning_rate: float = 0.1,
    momentum: float = 0.6,
    early_stop: bool = False,
    verbose: bool = True
) -> None:



Return Value
This function does not return anything. It trains the deeprai.models.FeedForward  instance on the given
data and saves the updated weights.

The train_model  function trains the deeprai.models.FeedForward  instance on the given training data
using the specified hyperparameters. It also evaluates the model on the test data after each epoch
and prints the training progress if verbose=True .

The batch_size  parameter specifies the batch size to use during training. The epochs  parameter
specifies the number of epochs to train the model for. The learning_rate  and momentum  parameters
specify the learning rate and momentum to use during training, respectively.

The early_stop  parameter specifies whether to use early stopping during training. If early_stop=True ,
the training will stop when the validation loss stops improving.

Examples
Here's an example of how to use the train_model  function:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='sigmoid')

train_inputs = ...
train_targets = ...
test_inputs = ...
test_targets = ...

model.train_model(
    train_inputs=train_inputs,
    train_targets=train_targets,
    test_inputs=test_inputs,
    test_targets=test_targets,



This code creates a FeedForward  model with an input shape of (784,) , adds three dense layers with
ReLU and softmax activation functions, sets

    batch_size=32,
    epochs=1000,
    learning_rate=0.1,
    momentum=0.6,
    early_stop=True,
    verbose=True
)



Feed Forward Model

Running data through a
network
Function Signature

Parameters
inputs  (np.ndarray): The input data to run through the network. This should be a numpy
array of shape (input_shape,) .

Return Value
output  (np.ndarray): The output of the network after running the given input through it.
This should be a numpy array of shape (output_shape,) .

Description
The run  function takes a single input and runs it through the network, returning the output of the
network.

The inputs  parameter should be a numpy array of shape (input_shape,) , where input_shape  is the
shape of the input to the network.

def run(
    self,
    inputs: np.ndarray
) -> np.ndarray:



The output  parameter is a numpy array of shape (output_shape,) , where output_shape  is the shape of
the output of the network.

Examples
Here's an example of how to use the run  function:

This code creates a FeedForward  model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config  function sets the optimizer to gradient descent  and the loss function
to categorical cross entropy .

The run  function takes a single input data of shape (784,)  and returns the output of the network as
a numpy array of shape (10,) .

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(loss='categorical cross entropy')

input_data = np.random.rand(784)
output_data = model.run(input_data)



Feed Forward Model

Viewing network information
Function Signature

Return Value
output  (str): A string representation of the network information, including the model type,
optimizer, parameters, loss function, and DeeprAI version.

Description
The specs  function returns a string representation of the network information, including the model
type, optimizer, parameters, loss function, and DeeprAI version.

Examples
Here's an example of how to use the specs  function:

def specs(self) -> str:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='mean square error')

model_specs = model.specs()



This code creates a FeedForward  model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config  function sets the optimizer to gradient descent  and the loss function
to mean square error .

The specs  function returns a string representation of the network information, including the model
type, optimizer, parameters, loss function, and DeeprAI version, which can be printed to the
console. The output should look something like this:

print(model_specs)

.---------------.------------------.-----------------.------------------.
|      Key      |       Val        |       Key       |       Val        |
:---------------+------------------+-----------------+------------------:
| Model         | Feed Forward     | Optimizer       | Gradient Descent |
:---------------+------------------+-----------------+------------------:
| Parameters    | 15               | Layer Model     | 2x5x1            |
:---------------+------------------+-----------------+------------------:
| Loss Function | Mean Square Error| DeeprAI Version | 0.0.12 BETA      |
'---------------'------------------'-----------------'------------------'



Feed Forward Model

Graphing
Function Signature

Parameters
metric  (str, optional): The metric to plot. Default is "cost" . Valid metrics are "cost" , "acc" ,
or "accuracy" , and "error" .

Return Value
None

Description
The graph  function uses matplotlib  to plot the change of the specified metric over the epochs. It
should be called after training the network.

Examples
Here's an example of how to use the graph  function:

def graph(self, metric: str = "cost") -> None:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)



This code creates a FeedForward  model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config  function sets the optimizer to gradient descent  and the loss function
to mean square error .

The train_model  function trains the model on the loaded data. After training, the graph  function is
called with the "accuracy"  metric to plot the accuracy over the epochs.

The output should be a plot of the specified metric over the epochs.

model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='mean square error')

train_inputs, train_targets, test_inputs, test_targets = # load data

model.train_model(train_inputs, train_targets, test_inputs, test_targets)

model.graph(metric='accuracy')



Feed Forward Model

Saving a Model
Function Signature
def save(self, file_location: str) -> None:

Parameters
file_location  (str): The location/path where the model's state will be saved.

Return Value
This function does not return anything. It saves the model's state to the specified file location.

Description
The save  function saves the current state of the deeprai.models.FeedForward  instance to a file. This
allows for easy checkpointing and restoration of trained models. The model's weights, architecture,
and configurations are stored at the specified file location. It's recommended to save the model
periodically during training to avoid potential data loss.

Examples
Here's an example of how to use the save  function:

from deeprai.models import FeedForward

# ... [Building and training the model] ...



# Saving the model's state to a file
model.save('path/to/save/model.deepr')

This code initializes and trains a FeedForward  model and then saves its state to the file located at
'path/to/save/model.deepr' .



Feed Forward Model

Loading a Model
Function Signature
def load(self, file_location: str) -> None:

Parameters
file_location  (str): The location/path from which the model's state will be loaded.

Return Value
This function does not return anything. It loads the model's state from the specified file location.

Description
The load  function restores the deeprai.models.FeedForward  instance from a saved state located at a
file. This can be used to continue training from a checkpoint, or to deploy pre-trained models
without the need to retrain them. The model's weights, architecture, and configurations are loaded
from the specified file location. Before using this function, ensure the model architecture is the
same as the one saved in the file.

Examples
Here's an example of how to use the load  function:

from deeprai.models import FeedForward

model = FeedForward()



# Loading the model's state from a file
model.load('path/to/saved/model.deepr')

This code initializes a FeedForward  model and then loads its state from the file located at
'path/to/saved/model.deepr' .



Activation Functions
How to use the activations in your own project
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Embeddings

Positional Embedding
Function Signature
def embed_position(sequence: np.ndarray) -> np.ndarray:

Parameters
sequence (np.ndarray): A 2D numpy array where the first dimension represents the
sequence length and the second represents the embedding dimension.

Return Value
Returns a 2D numpy array with positional embeddings applied to the input sequence.

Description
The embed_position  function applies positional embedding to a given sequence. The positional
embedding is computed using a Cython implementation, which is expected to be faster than a pure
Python implementation. The purpose of this embedding is to provide the model with information
about the position of elements in the sequence, which can be crucial for certain tasks such as
sequence-to-sequence modeling.

Examples
Here's a basic example to demonstrate how to use the embed_position  function:

import numpy as np
from deeprai.embedding.positional_embedding import embed_position

# Create a mock sequence
sequence = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]])

# Apply positional embedding



embedded_sequence = embed_position(sequence)

print(embedded_sequence)



Embeddings

Word Vecrotization
Module Import:
from deeprai.embedding import word_vectorize

Class Definition:
class WordVectorizer:

Initialization:
The WordVectorizer is initialized with an optional corpus, which is used for TF-IDF computations.

def __init__(self, corpus=None):

Parameters:

corpus (list of str, optional): List of words that forms the basis for the term frequency-
inverse document frequency (TF-IDF) calculations.

Methods:
1. One-Hot Vectorization:
Converts a given word into a one-hot encoded matrix.

def one_hot_vectorize(self, word) -> np.ndarray:

Parameters:

word (str): The word to vectorize.

Returns:

numpy.ndarray: One-hot encoded matrix representation of the word.

2. Continuous Vectorization:



Encodes a given word into continuous values for each character.

def continuous_vectorize(self, word) -> np.ndarray:

Parameters:

word (str): The word to vectorize.

Returns:

numpy.ndarray: Continuous valued representation of the word.

3. Binary Vectorization:
Converts each character of a word into its binary ASCII representation.

def binary_vectorize(self, word) -> np.ndarray:

Parameters:

word (str): The word to vectorize.

Returns:

numpy.ndarray: Binary ASCII representation of the word.

4. Frequency Vectorization:
Encodes the word based on the frequency of each letter normalized by word length.

def frequency_vectorize(self, word) -> np.ndarray:

Parameters:

word (str): The word to vectorize.

Returns:

numpy.ndarray: Frequency-based representation of the word.

5. N-gram Vectorization:
Vectorizes the word by creating n-grams.

def ngram_vectorize(self, word, n=2) -> np.ndarray:

Parameters:

word (str): The word to vectorize.
n (int, default=2): The size of the n-grams.



Returns:

numpy.ndarray: N-gram based vector representation of the word.

6. TF-IDF Vectorization:
Vectorizes a word based on term frequency-inverse document frequency.

def tfidf_vectorize(self, word) -> np.ndarray:

Parameters:

word (str): The word to vectorize.

Returns:

numpy.ndarray: TF-IDF representation of the word.

Raises:

ValueError: If the WordVectorizer is not initialized with a corpus.

Description:
The WordVectorizer  class from the deeprai.embedding.word_vectorize  module provides multiple ways to
represent words as vectors. These include methods like one-hot encoding, continuous encoding,
binary encoding, frequency-based encoding, n-gram-based encoding, and TF-IDF encoding. The TF-
IDF method requires a corpus to be passed during the initialization of the class.

Examples:
Module Import and Initialization:
First, let's import the necessary module and initialize our WordVectorizer. For methods that require
a corpus (like TF-IDF), we'll provide a sample corpus.

from deeprai.embedding import word_vectorize

corpus = ["apple", "banana", "cherry", "date", "fig", "grape"]
vectorizer = word_vectorize.WordVectorizer(corpus=corpus)



1. One-Hot Vectorization:
This method will transform a word into a matrix where each row is a one-hot encoded
representation of a character in the word.

word = "apple"
one_hot_encoded = vectorizer.one_hot_vectorize(word)
print(one_hot_encoded)

2. Continuous Vectorization:
This method will transform a word into a vector of continuous values.

word = "apple"
continuous_vector = vectorizer.continuous_vectorize(word)
print(continuous_vector)

3. Binary Vectorization:
This will convert each character of the word into its 8-bit ASCII representation.

word = "apple"
binary_vector = vectorizer.binary_vectorize(word)
print(binary_vector)

4. Frequency Vectorization:
This method vectorizes a word based on the normalized frequency of each letter in it.

word = "apple"
frequency_vector = vectorizer.frequency_vectorize(word)
print(frequency_vector)

5. N-gram Vectorization:



This method will break the word into n-grams and vectorize them. For this example, we'll use n=2
(bigrams).

word = "apple"
bigram_vector = vectorizer.ngram_vectorize(word, n=2)
print(bigram_vector)

6. TF-IDF Vectorization:
This method requires a corpus to compute the inverse document frequency. It will then vectorize a
word based on its term frequency and the inverse document frequency from the corpus.

word = "apple"
tfidf_vector = vectorizer.tfidf_vectorize(word)
print(tfidf_vector)



Tools
Tools for helping create neural networks



Tools

Noise
Module: deeprai.tools.noise
This module provides a set of classes for introducing different types of noise into numpy arrays,
typically used for image data augmentation or robustness testing.

1. GaussianNoise Class
Description:
The GaussianNoise  class applies Gaussian noise to a list of numpy arrays (images).

Attributes:
mean ( float , default=0): Mean of the Gaussian distribution.
std ( float , default=1): Standard deviation of the Gaussian distribution.

Methods:
compute(): Internal method to get a function that introduces Gaussian noise to an image.
noise(arrays): Applies Gaussian noise to a list of numpy arrays. Uses multi-threading for
efficiency.

Usage:
from deeprai.tools.noise import GaussianNoise

gaussian_noise = GaussianNoise(mean=0, std=25)



noisy_images = gaussian_noise.noise(list_of_images)

2. SaltPepperNoise Class
Description:
The SaltPepperNoise  class introduces salt and pepper noise to a list of numpy arrays.

Attributes:
s_vs_p ( float , default=0.5): Proportion of salt vs. pepper noise.
amount ( float , default=0.04): Overall amount of noise to introduce.

Methods:
compute(): Internal method to get a function that introduces salt and pepper noise to an
image.
noise(arrays): Applies salt and pepper noise to a list of numpy arrays. Uses multi-
threading for efficiency.

Usage:
from deeprai.tools.noise import SaltPepperNoise

sp_noise = SaltPepperNoise(s_vs_p=0.5, amount=0.04)
noisy_images = sp_noise.noise(list_of_images)

3. SpeckleNoise Class
Description:



The SpeckleNoise  class introduces speckle noise to a list of numpy arrays.

Methods:
compute(): Internal method to get a function that introduces speckle noise to an image.
noise(arrays): Applies speckle noise to a list of numpy arrays. Uses multi-threading for
efficiency.

Usage:
from deeprai.tools.noise import SpeckleNoise

speckle_noise = SpeckleNoise()
noisy_images = speckle_noise.noise(list_of_images)

General Note:
For all the above classes, the noise  method is designed for efficient computation by applying noise
to multiple images using multi-threading. Each image in the input list is processed in a separate
thread.

The results are then compiled and returned as a list of numpy arrays.



Tools

Toolkit
Module: deeprai.tools.toolkit
This module provides a collection of utility functions designed for numpy arrays. These functions
offer various operations like verification, rounding, normalization, reshaping, and others, enhancing
usability and information retrieval from numpy arrays.

1. verify_inputs(array)

Description:
Verify if the given input is a numpy array.

Parameters:
array: The input to be checked.

Returns:
bool: True if the input is a numpy array, otherwise False.

Example:
from deeprai.tools.toolkit import verify_inputs

result = verify_inputs(np.array([1, 2, 3]))
print(result)  # True



2. round_out(array, a=2)

Description:
Round the elements of a numpy array and set specific print options.

Parameters:
array ( np.ndarray ): The input numpy array.
a ( int , optional): Decimal places to round to. Defaults to 2.

Returns:
np.ndarray: The rounded numpy array.

Example:
from deeprai.tools.toolkit import round_out

rounded_array = round_out(np.array([1.12345, 2.6789]))
print(rounded_array)  # [1.12, 2.68]

3. normalize(array)

Description:
Normalize the elements of the numpy array to the range [0, 1].

Parameters:
array ( np.ndarray ): The input array.



Returns:
np.ndarray: The normalized array.

Example:
from deeprai.tools.toolkit import normalize

norm_array = normalize(np.array([10, 20, 30, 40]))
print(norm_array)

4. reshape_to_2d(array)

Description:
Reshape the numpy array to a 2D format if it's not already in that shape.

Parameters:
array ( np.ndarray ): The input array.

Returns:
np.ndarray: The reshaped 2D array.

Example:
from deeprai.tools.toolkit import reshape_to_2d

reshaped_array = reshape_to_2d(np.array([1, 2, 3, 4]))
print(reshaped_array)



5. is_square_matrix(array)

Description:
Check if the given numpy array is a square matrix.

Parameters:
array ( np.ndarray ): The input array.

Returns:
bool: True if the array is a square matrix, otherwise False.

Example:
from deeprai.tools.toolkit import is_square_matrix

result = is_square_matrix(np.array([[1, 2], [3, 4]]))
print(result)  # True

6. sum_along_axis(array, axis=0)

Description:
Compute the sum of elements of the numpy array along a specified axis.

Parameters:
array ( np.ndarray ): The input array.
axis ( int , optional): Axis along which the sum is computed. Defaults to 0.



Returns:
np.ndarray: The sum along the specified axis.

Example:
from deeprai.tools.toolkit import sum_along_axis

summed_array = sum_along_axis(np.array([[1, 2], [3, 4]]))
print(summed_array)  # [4, 6]

7. array_info(array)

Description:
Retrieve essential information about the numpy array.

Parameters:
array ( np.ndarray ): The input array.

Returns:
dict: A dictionary containing shape, data type, minimum and maximum values.

Example:
from deeprai.tools.toolkit import array_info

info = array_info(np.array([[1, 2], [3, 4]]))
print(info)
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Regression

Linear Regression
Module:
deeprai.models.regression.linear_regression
This module introduces a simple Linear Regression model. Linear Regression is a statistical
technique commonly used for modeling and analyzing relationships between two variables.

Class: LinearRegression
A class representation of the linear regression model.

1. Initializer: __init__(self)
Description:
Initializes the LinearRegression  class.

Attributes:
fitted_vals ( list ): A list to store the results after the model has been fitted. This is
primarily the coefficients of the linear equation.

Example:
from deeprai.models.regression.linear_regression import LinearRegression

model = LinearRegression()

2. Method: fit(self, x_vals, y_vals)



Description:
Fit the model to the given x_vals  and y_vals  using linear regression.

Parameters:
x_vals ( list  or np.ndarray ): The input values or features.
y_vals ( list  or np.ndarray ): The output values or labels.

Returns:
list : Coefficients of the linear equation.

Example:
model.fit(x_vals=[1, 2, 3], y_vals=[2, 4, 6])

3. Method: run(self, x_val)
Description:
Use the previously fitted model to predict the output for a given x_val .

Parameters:
x_val ( float ): The input value for which the prediction is desired.

Returns:
float : Predicted value based on the linear regression equation.

Example:
predicted_val = model.run(4)
print(predicted_val)



Regression

Poly Regression
Module:
deeprai.models.regression.poly_regression

Class: PolyRegression
A class representation of the polynomial regression model.

1. Initializer: __init__(self)
Description:
Initializes the PolyRegression  class.

Attributes:
fitted_vals ( list ): A list to store the results after the model has been fitted. These values
represent the coefficients of the polynomial equation.

Example:
from deeprai.models.regression import PolyRegression

model = PolyRegression()

2. Method: fit(self, x_vals, y_vals)
Description:



Fit the model to the given x_vals  and y_vals  using polynomial regression.

Parameters:
x_vals ( list  or np.ndarray ): The input values or features.
y_vals ( list  or np.ndarray ): The output values or labels.

Returns:
list : Coefficients of the polynomial equation, starting from the coefficient of the highest
degree term.

Example:
model.fit(x_vals=[1, 2, 3], y_vals=[2, 5, 10])

3. Method: run(self, x_val)
Description:
Use the previously fitted model to predict the output for a given x_val  based on the polynomial
equation.

Parameters:
x_val ( float ): The input value for which the prediction is desired.

Returns:
float : Predicted value based on the polynomial regression equation.

Example:
predicted_val = model.run(4)
print(predicted_val)



Regression

Sine Regression
Module:
deeprai.models.regression.sine_regression

Class: SineRegression
A class representation of the sine regression model.

1. Initializer: __init__(self)
Description:
Initializes the SineRegression  class.

Attributes:
fitted_vals ( list ): A list to store the results after the model has been fitted. These values
represent the parameters of the sine equation.

Example:
from deeprai.models.regression import SineRegression

model = SineRegression()

2. Method: fit(self, x_vals, y_vals)
Description:



Fit the model to the given x_vals  and y_vals  using sine regression.

Parameters:
x_vals ( list  or np.ndarray ): The input values or features.
y_vals ( list  or np.ndarray ): The output values or labels.

Returns:
list : Parameters of the sine equation, which includes amplitude, frequency, phase shift,
and vertical shift.

Example:
model.fit(x_vals=[1, 2, 3], y_vals=[2, 1.5, 2.5])

3. Method: run(self, x_val)
Description:
Use the previously fitted model to predict the output for a given x_val  based on the sine equation.

Parameters:
x_val ( float ): The input value for which the prediction is desired.

Returns:
float : Predicted value based on the sine regression equation.

Example:
predicted_val = model.run(4)
print(predicted_val)



K-Nearest Neighbors
K-nearest neighbors (KNN) is a supervised machine learning algorithm that classifies a data point
based on how its neighbors are classified.



K-Nearest Neighbors

Instant classifier

Instant Classifier Function
Function Signature

def instant_classifier(self, x_vals, y_vals, query_point, p=3, k=2):

Parameters
x_vals: The input data points.
y_vals (must be converted to int32): The labels corresponding to the input data points.
query_point: The point for which classification is to be determined.
p (int, default=3): The power parameter for the Minkowski distance metric.
k (int, default=2): The number of nearest neighbors to consider for classification.

Return Value
Returns the classification result for the query_point  based on the k  nearest neighbors in the x_vals
dataset.

Description
The instant_classifier  function classifies a given query_point  based on the k  nearest neighbors in the
x_vals  dataset.  The labels of the k  nearest neighbors are then used to determine the classification
of the query_point .



Examples
from deeprai.models import KNN

# Sample data
x_vals = [[1, 2], [2, 3], [3, 4]]
y_vals = [0, 1, 0]
query_point = [2, 2]

# Create an instance of the classifier
classifier = KNN()

# Classify the query_point
result = classifier.instant_classifier(x_vals, y_vals, query_point, p=3, k=2)
print(result)  # This will print the classification result for the query_point

Note: Ensure that y_vals  is converted to int32  before passing it to the function.



K-Nearest Neighbors

Store Data in KNN
Storing Values in KNN
Classifier
Function Signature

def store_vals(self, x_values, y_values, p=3, k=2):

Parameters
x_values: The input data points to be stored in the classifier.
y_values (must be converted to int32): The labels corresponding to the input data points
to be stored in the classifier.
p (int, default=3): The power parameter for the Minkowski distance metric, to be stored
for future use.
k (int, default=2): The number of nearest neighbors to consider for classification, to be
stored for future use.

Return Value
This function does not return anything. It modifies the KNN instance by storing the provided values.

Description



The store_vals  function stores the provided data points, labels, power parameter, and number of
neighbors in the KNN classifier instance. This allows for the classifier to use these values in
subsequent classification tasks without needing them to be provided again.

Examples
from deeprai.models import KNN

# Sample data
x_vals = [[1, 2], [2, 3], [3, 4]]
y_vals = [0, 1, 0]

# Create an instance of the classifier
classifier = KNN()

# Store the values in the classifier
classifier.store_vals(x_vals, y_vals, p=3, k=2)

Note: Ensure that y_vals  is converted to int32  before storing.



K-Nearest Neighbors

Classifying a Query Point
Classifying a Query Point
with KNN
Function Signature

def classify(self, query_point):

Parameters
query_point: The point for which classification is to be determined.

Return Value
Returns the classification result for the query_point  based on the stored values in the KNN instance.

Description
The classify  function classifies a given query_point  based on the stored values in the KNN instance.
The distance between the points is calculated using the Minkowski distance metric with the stored
power parameter. The labels of the stored data points are then used to determine the classification
of the query_point .

It's important to note that the store_vals  function must be called prior to using the classify  function
to ensure that the necessary values are stored in the KNN instance.



Examples
from deeprai.models import KNN

# Sample data
x_vals = [[1, 2], [2, 3], [3, 4]]
y_vals = [0, 1, 0]
query_point = [2, 2]

# Create an instance of the classifier
classifier = KNN()

# Store the values in the classifier
classifier.store_vals(x_vals, y_vals, p=3, k=2)

# Classify the query_point
result = classifier.classify(query_point)
print(result)  # This will print the classification result for the query_point



K-Nearest Neighbors

Calculating Classification
Probability
Calculating Classification
Probability with KNN
Function Signature

def classify_probability(self, query_point, expected_val):

Parameters
query_point: The point for which classification probability is to be determined.
expected_val: The label value for which the probability is to be calculated.

Return Value
Returns the probability (in percentage) that the query_point  belongs to the class specified by
expected_val  based on the stored values in the KNN instance.

Description
The classify_probability  function calculates the probability that a given query_point  belongs to the
class specified by expected_val . It first retrieves the nearest neighbors of the query_point  using the



classify_neighbors  function. It then counts how many of these neighbors have the label expected_val
and calculates the probability based on this count.

It's important to note that the store_vals  function must be called prior to using the classify_probability
function to ensure that the necessary values are stored in the KNN instance.

Examples
from deeprai.models import KNN

# Sample data
x_vals = [[1, 2], [2, 3], [3, 4]]
y_vals = [0, 1, 0]
query_point = [2, 2]

# Create an instance of the classifier
classifier = KNN()

# Store the values in the classifier
classifier.store_vals(x_vals, y_vals, p=3, k=2)

# Calculate the probability that the query_point belongs to class 1
probability = classifier.classify_probability(query_point, 1)
print(f"The probability that the query point belongs to class 1 is {probability}%")



K-Nearest Neighbors

Retrieving Nearest
Neighbors
Retrieving Nearest
Neighbors with KNN
Function Signature

def classify_neighbors(self, query_point):

Parameters
query_point: The point for which the nearest neighbors are to be determined.

Return Value
Returns the indices of the k  nearest neighbors to the query_point  based on the stored values in the
KNN instance.

Description
The classify_neighbors  function retrieves the indices of the k  nearest neighbors for a given
query_point  based on the stored values in the KNN instance.



It's important to note that the store_vals  function must be called prior to using the classify_neighbors
function to ensure that the necessary values are stored in the KNN instance.

Examples
from deeprai.models import KNN

# Sample data
x_vals = [[1, 2], [2, 3], [3, 4]]
y_vals = [0, 1, 0]
query_point = [2, 2]

# Create an instance of the classifier
classifier = KNN()

# Store the values in the classifier
classifier.store_vals(x_vals, y_vals, p=3, k=2)

# Retrieve the nearest neighbors of the query_point
neighbors = classifier.classify_neighbors(query_point)
print(f"The indices of the nearest neighbors to the query point are: {neighbors}")



K-Nearest Neighbors

Configuring Distance Metric
Configuring Distance Metric
for KNN
Function Signature

def config_distance(self, distance):

Parameters
distance: The name of the distance metric to be configured for the KNN instance.

Return Value
This function does not return anything. It modifies the KNN instance.

Description
The config_distance  function sets the distance metric for the KNN instance.

The valid distance metrics that can be passed to this function are:

"hamming distance"
"minkowski distance"
"manhattan distance"



"euclidean distance"

Examples
from deeprai.models import KNN

# Create an instance of the classifier
classifier = KNN()

# Configure the distance metric to be used
classifier.config_distance("euclidean distance")


