
Feed Forward Model
Creating a layer
Configuring Loss/Optimizers
Training a network
Running data through a network
Viewing network information
Graphing
Saving a Model
Loading a Model

Creating a layer
Function Signature

Parameters
neurons (int): The number of neurons in the dense layer. Required parameter.
activation (str, default='sigmoid'): The activation function to use in the dense layer. Valid
options are 'sigmoid', 'relu', 'leaky relu' 'tanh', 'softmax', and 'linear'
dropout (float, default=0.): The dropout rate to use in the dense layer. This parameter
should be a float between 0 and 1, where 0 means no dropout and 1 means all neurons
are dropped.
l1_penalty (float, default=0.): The L1 regularization penalty to use in the dense layer. This
parameter should be a float greater than or equal to 0.

l2_penalty (float, default=0.): The L2 regularization penalty to use in the dense layer. This
parameter should be a float greater than or equal to 0.

Return Value
This function does not return anything. It modifies the deeprai.models.FeedForward instance by adding
a dense layer with the specified parameters.

Description

def add_dense(
 neurons: int,
 activation: str = 'sigmoid',
 dropout: float = 0.,
 l1_penalty: float = 0.,
 l2_penalty: float = 0.
) -> None:

The add_dense function adds a dense layer to the deeprai.models.FeedForward instance. A dense layer
is a layer of fully connected neurons where each neuron is connected to every neuron in the
previous layer.

If this is the first layer added to the model, then add_dense will automatically treat it as an input
layer and ignore any arguments other than neurons . This is because an input layer does not have
an activation function, dropout, or regularization penalties.

If this is not the first layer added to the model, then add_dense will add a dense layer with the
specified parameters to the model.

Examples
Here is an example of how to use the add_dense function:

This code creates a FeedForward model with an input with 784 neurons, adds a dense layer with
128 neurons, a ReLU activation function, and a 20% dropout rate, and then adds another dense
layer with 64 neurons, a sigmoid activation function, and an L2 regularization penalty of 0.001.

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu', dropout=0.2)
model.add_dense(64, activation='sigmoid', l2_penalty=0.001)

Configuring Loss/Optimizers
Function Signature

Parameters
optimizer (str, default='gradient descent'): The optimizer to use during training. Currently,
deeprai is in beta, so the only valid option for optimizer is 'gradient descent'.
loss (str, default='mean square error'): The loss function to use during training. Valid
options are 'mean square error', 'categorical cross entropy', and 'mean absolute error'.

Return Value
This function does not return anything. It modifies the deeprai.models.FeedForward instance by setting
the optimizer and loss function.

Description
The config function sets the optimizer and loss function for the deeprai.models.FeedForward
instance. While it is not necessary to call this function, if called, it will use the default values of
'gradient descent' for optimizer and 'mean square error' for loss function.

Currently, deeprai is in beta, so the only valid option for optimizer is 'gradient descent'. The loss
parameter sets the loss function to use during training. Valid options are 'mean square error',
'categorical cross entropy', and 'mean absolute error'.

def config(
 optimizer: str = 'gradient descent',
 loss: str = 'mean square error'
) -> None:

Examples
Here's an example of how to use the config function:

This code creates a FeedForward model with an input shape of (784,) , adds three dense layers with
ReLU and softmax activation functions, and sets the optimizer to 'gradient descent' and the loss
function to 'categorical cross entropy'.

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='categorical cross entropy')

Training a network
Function Signature

Parameters
train_inputs (np.ndarray): The input data to use for training. This should be a numpy array
of shape (num_samples, input_shape) .
train_targets (np.ndarray): The target data to use for training. This should be a numpy
array of shape (num_samples, output_shape) .
test_inputs (np.ndarray): The input data to use for testing. This should be a numpy array of
shape (num_samples, input_shape) .
test_targets (np.ndarray): The target data to use for testing. This should be a numpy array
of shape (num_samples, output_shape) .
batch_size (int, default=36): The batch size to use during training.
epochs (int, default=500): The number of epochs to train the model for.
learning_rate (float, default=0.1): The learning rate to use during training.
momentum (float, default=0.6): The momentum to use during training.
early_stop (bool, default=False): Whether to use early stopping during training. If True, the
training will stop when the validation loss stops improving.
verbose (bool, default=True): Whether to print training progress during training.

def train_model(
 train_inputs: np.ndarray,
 train_targets: np.ndarray,
 test_inputs: np.ndarray,
 test_targets: np.ndarray,
 batch_size: int = 36,
 epochs: int = 500,
 learning_rate: float = 0.1,
 momentum: float = 0.6,
 early_stop: bool = False,
 verbose: bool = True
) -> None:

Return Value
This function does not return anything. It trains the deeprai.models.FeedForward instance on the given
data and saves the updated weights.

The train_model function trains the deeprai.models.FeedForward instance on the given training data
using the specified hyperparameters. It also evaluates the model on the test data after each epoch
and prints the training progress if verbose=True .

The batch_size parameter specifies the batch size to use during training. The epochs parameter
specifies the number of epochs to train the model for. The learning_rate and momentum parameters
specify the learning rate and momentum to use during training, respectively.

The early_stop parameter specifies whether to use early stopping during training. If early_stop=True ,
the training will stop when the validation loss stops improving.

Examples
Here's an example of how to use the train_model function:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='sigmoid')

train_inputs = ...
train_targets = ...
test_inputs = ...
test_targets = ...

model.train_model(
 train_inputs=train_inputs,
 train_targets=train_targets,
 test_inputs=test_inputs,
 test_targets=test_targets,

This code creates a FeedForward model with an input shape of (784,) , adds three dense layers with
ReLU and softmax activation functions, sets

 batch_size=32,
 epochs=1000,
 learning_rate=0.1,
 momentum=0.6,
 early_stop=True,
 verbose=True
)

Running data through a
network
Function Signature

Parameters
inputs (np.ndarray): The input data to run through the network. This should be a numpy
array of shape (input_shape,) .

Return Value
output (np.ndarray): The output of the network after running the given input through it.
This should be a numpy array of shape (output_shape,) .

Description
The run function takes a single input and runs it through the network, returning the output of the
network.

The inputs parameter should be a numpy array of shape (input_shape,) , where input_shape is the
shape of the input to the network.

def run(
 self,
 inputs: np.ndarray
) -> np.ndarray:

The output parameter is a numpy array of shape (output_shape,) , where output_shape is the shape of
the output of the network.

Examples
Here's an example of how to use the run function:

This code creates a FeedForward model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config function sets the optimizer to gradient descent and the loss function
to categorical cross entropy .

The run function takes a single input data of shape (784,) and returns the output of the network as
a numpy array of shape (10,) .

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(loss='categorical cross entropy')

input_data = np.random.rand(784)
output_data = model.run(input_data)

Viewing network information
Function Signature

Return Value
output (str): A string representation of the network information, including the model type,
optimizer, parameters, loss function, and DeeprAI version.

Description
The specs function returns a string representation of the network information, including the model
type, optimizer, parameters, loss function, and DeeprAI version.

Examples
Here's an example of how to use the specs function:

def specs(self) -> str:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')
model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='mean square error')

model_specs = model.specs()
print(model_specs)

This code creates a FeedForward model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config function sets the optimizer to gradient descent and the loss function
to mean square error .

The specs function returns a string representation of the network information, including the model
type, optimizer, parameters, loss function, and DeeprAI version, which can be printed to the
console. The output should look something like this:

.---------------.------------------.-----------------.------------------.
| Key | Val | Key | Val |
:---------------+------------------+-----------------+------------------:
| Model | Feed Forward | Optimizer | Gradient Descent |
:---------------+------------------+-----------------+------------------:
| Parameters | 15 | Layer Model | 2x5x1 |
:---------------+------------------+-----------------+------------------:
| Loss Function | Mean Square Error| DeeprAI Version | 0.0.12 BETA |
'---------------'------------------'-----------------'------------------'

Graphing
Function Signature

Parameters
metric (str, optional): The metric to plot. Default is "cost" . Valid metrics are "cost" , "acc" ,
or "accuracy" , and "error" .

Return Value
None

Description
The graph function uses matplotlib to plot the change of the specified metric over the epochs. It
should be called after training the network.

Examples
Here's an example of how to use the graph function:

def graph(self, metric: str = "cost") -> None:

from deeprai.models import FeedForward

model = FeedForward()
model.add_dense(784)
model.add_dense(128, activation='relu')

This code creates a FeedForward model with a single dense layer of size 784 , followed by two
additional dense layers with ReLU activation functions, and a final dense layer with a softmax
activation function. The config function sets the optimizer to gradient descent and the loss function
to mean square error .

The train_model function trains the model on the loaded data. After training, the graph function is
called with the "accuracy" metric to plot the accuracy over the epochs.

The output should be a plot of the specified metric over the epochs.

model.add_dense(64, activation='relu')
model.add_dense(10, activation='softmax')
model.config(optimizer='gradient descent', loss='mean square error')

train_inputs, train_targets, test_inputs, test_targets = # load data

model.train_model(train_inputs, train_targets, test_inputs, test_targets)

model.graph(metric='accuracy')

Saving a Model
Function Signature
def save(self, file_location: str) -> None:

Parameters
file_location (str): The location/path where the model's state will be saved.

Return Value
This function does not return anything. It saves the model's state to the specified file location.

Description
The save function saves the current state of the deeprai.models.FeedForward instance to a file. This
allows for easy checkpointing and restoration of trained models. The model's weights, architecture,
and configurations are stored at the specified file location. It's recommended to save the model
periodically during training to avoid potential data loss.

Examples
Here's an example of how to use the save function:

from deeprai.models import FeedForward

... [Building and training the model] ...

Saving the model's state to a file

model.save('path/to/save/model.deepr')

This code initializes and trains a FeedForward model and then saves its state to the file located at
'path/to/save/model.deepr' .

Loading a Model
Function Signature
def load(self, file_location: str) -> None:

Parameters
file_location (str): The location/path from which the model's state will be loaded.

Return Value
This function does not return anything. It loads the model's state from the specified file location.

Description
The load function restores the deeprai.models.FeedForward instance from a saved state located at a
file. This can be used to continue training from a checkpoint, or to deploy pre-trained models
without the need to retrain them. The model's weights, architecture, and configurations are loaded
from the specified file location. Before using this function, ensure the model architecture is the
same as the one saved in the file.

Examples
Here's an example of how to use the load function:

from deeprai.models import FeedForward

model = FeedForward()

Loading the model's state from a file
model.load('path/to/saved/model.deepr')

This code initializes a FeedForward model and then loads its state from the file located at
'path/to/saved/model.deepr' .

